Converting TensorFlow 2 BERT Transformer Models

The following examples demonstrate converting TensorFlow 2 models to Core ML using Core ML Tools.

Convert the DistilBERT Transformer Model

The following example converts the DistilBERT model from Huggingface to Core ML.

📘

Install Transformers

You may need to first install Transformers version 4.17.0.

Follow these steps:

  1. Add the import statements:
import numpy as np
import coremltools as ct
import tensorflow as tf

from transformers import DistilBertTokenizer, TFDistilBertForMaskedLM
  1. Load the DistilBERT model and tokenizer. This example uses the TFDistilBertForMaskedLM variant:
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased')
distilbert_model = TFDistilBertForMaskedLM.from_pretrained('distilbert-base-cased')
  1. Describe and set the input layer, and then build the TensorFlow model (tf_model):
max_seq_length = 10
input_shape = (1, max_seq_length) #(batch_size, maximum_sequence_length)

input_layer = tf.keras.layers.Input(shape=input_shape[1:], dtype=tf.int32, name='input')

prediction_model = distilbert_model(input_layer)
tf_model = tf.keras.models.Model(inputs=input_layer, outputs=prediction_model)
  1. Convert the tf_model to a Core ML neural network (mlmodel):
mlmodel = ct.convert(tf_model)
  1. Create the input using tokenizer:
# Fill the input with zeros to adhere to input_shape
input_values = np.zeros(input_shape)
# Store the tokens from our sample sentence into the input
input_values[0,:8] = np.array(tokenizer.encode("Hello, my dog is cute")).astype(np.int32)
  1. Use mlmodel for prediction:
mlmodel.predict({'input':input_values}) # 'input' is the name of our input layer from (3)

Convert the TF Hub BERT Transformer Model

The following example converts the BERT model from TensorFlow Hub. Follow these steps:

  1. Add the import statements:
import numpy as np
import tensorflow as tf
import tensorflow_hub as tf_hub

import coremltools as ct
  1. Describe and set the input layer:
max_seq_length = 384
input_shape = (1, max_seq_length)

input_words = tf.keras.layers.Input(
    shape=input_shape[1:], dtype=tf.int32, name='input_words')
input_masks = tf.keras.layers.Input(
    shape=input_shape[1:], dtype=tf.int32, name='input_masks')
segment_ids = tf.keras.layers.Input(
    shape=input_shape[1:], dtype=tf.int32, name='segment_ids')
  1. Build the TensorFlow model (tf_model):
bert_layer = tf_hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/1", trainable=False)

pooled_output, sequence_output = bert_layer(
    [input_words, input_masks, segment_ids])

tf_model = tf.keras.models.Model(
    inputs=[input_words, input_masks, segment_ids],
    outputs=[pooled_output, sequence_output])
  1. Convert the tf_model to a neural network:
mlmodel = ct.convert(tf_model, source='TensorFlow')