Jump to Content
coremltoolsGuidesAPI ReferenceExamples
HomeGuides
GuidesAPI ReferenceExamplesCore ML FormatGithubcoremltools
Guides
Core ML FormatGithub
HomeGuides

Overview

  • Introduction
  • Installation
  • Quickstart Example
  • Migrating to This Version
  • Contributing
    • GitHub
    • Contribution Guidelines
  • Release Notes

Neural Networks

  • Unified Conversion API
  • TensorFlow 1 Conversion
    • Convert a TensorFlow 1 Image Classifier
    • Convert a TensorFlow 1 DeepSpeech Model
  • TensorFlow 2 Conversion
    • Convert TensorFlow 2 BERT Transformer Models
  • PyTorch Conversion
    • Model Tracing
    • Model Scripting
    • Convert a PyTorch Segmentation Model
  • Model Intermediate Language
  • Conversion Options
    • Image Inputs
    • Classifiers
    • Flexible Input Shapes
    • Composite Operators
    • Custom Operators
  • Quantization
  • Other Converters
    • Multi-backend Keras
    • ONNX
    • Caffe

Trees & Linear Models

  • LibSVM
  • Scikit-learn
  • XGBoost

MLModel

  • MLModel Overview
  • Model Prediction
  • Xcode Model Preview Types
  • MLModel Utilities

Updatable Models

  • Updatable Models Overview
  • Nearest Neighbor Classifier
  • Neural Network Classifier
  • Pipeline Classifier

Updatable Models Overview

Suggest Edits

Core ML allows you to personalize models using the MLUpdateTask API. Three types of models are updatable: neural networks, pipeline models, and nearest neighbors. For examples, see the following:

  • Updatable neural network classifier
  • Updatable pipeline model
  • Updatable nearest neighbors classifier

Updated over 4 years ago


What’s Next
  • Neural Network Classifier
  • Pipeline Classifier
  • Nearest Neighbor Classifier