You can convert a LibSVM model to the Core ML format using coremltools.converters.libsvm.convert(model, input_names='input', target_name='target', probability='classProbability', input_length='auto').

# Make a LIBSVM model import svmutil problem = svmutil.svm_problem([0,0,1,1], [[0,1], [1,1], [8,9], [7,7]]) libsvm_model = svmutil.svm_train(problem, svmutil.svm_parameter()) # Convert using default input and output names import coremltools as ct coreml_model = ct.converters.libsvm.convert(libsvm_model) # Save the Core ML model to a file. coreml_model.save('./my_model.mlmodel') # Convert using user specified input names coreml_model = ct.converters.libsvm.convert(libsvm_model, input_names=['x', 'y'])

For more information, see the API reference.


Did this page help you?